bl双性厨房裸体围裙_一本大道一卡二卡三卡_2019年中文字字幕在线看不卡_中文字幕日产乱码天堂

首頁 | 資訊 | 財經(jīng) | 公益 | 彩店 | 奇聞 | 速遞 | 前瞻 | 提點 | 網(wǎng)站相關(guān) | 科技 | 熱點 | 生活 |
Blender學(xué)習(xí)日記(七)——Bevel倒角節(jié)點的運用及模型曲率計算、曲率節(jié)點

發(fā)稿時間:2023-08-09 09:53:12 來源: 嗶哩嗶哩
1、前言

編寫:舟午YueMoon


(相關(guān)資料圖)

關(guān)鍵詞:法線、倒角、向量、空間向量、三角函數(shù)、點積、曲率節(jié)點、倒角節(jié)點

在Blender中制作材質(zhì)時我們可能需要計算模型的曲率,達到給模型邊角進行破損處理的目的。

但在Blender的材質(zhì)節(jié)點環(huán)境中并沒有OC和Redshift那樣的曲率節(jié)點,所以我們需要手動創(chuàng)建一個節(jié)點組,用來計算模型邊角的曲率,將有棱角的地方和平滑的地方分離出來。

如果你不想了解原理,只想知道這個節(jié)點應(yīng)該怎么連的話,你可以直接跳轉(zhuǎn)到文末的最后一張圖。

以正方體和棱角球為例:

最終結(jié)果演示:

注意:本方案中使用到了Bevel(倒角)節(jié)點,該節(jié)點僅在Cycles渲染器中生效,故本方案不適用于Eevee渲染器。

2、倒角節(jié)點原理

官方文檔關(guān)于Bevel節(jié)點的說明:倒角節(jié)點 — Blender Manual

簡而言之,Bevel節(jié)點就是通過對法線圖進行模糊處理而對模型表面產(chǎn)生倒角的效果。(下圖來自官方文檔)

在材質(zhì)節(jié)點中新建一個Bevel節(jié)點,先將Radius(半徑)屬性歸零,直連輸出,得到下圖效果。對于正方體而言,它正常的法線圖應(yīng)該是邊角分明:

而Bevel節(jié)點可將法線圖進行高斯模糊處理進而產(chǎn)生倒角,用Radius屬性控制模糊半徑(即倒角半徑):

此時,模型表面被Bevel節(jié)點模擬出了倒角。(注意,這個效果只是Bevel節(jié)點影響法線貼圖而模擬出的倒角,模型本身并沒有任何變化,畢竟這里只是材質(zhì)節(jié)點空間,不是幾何節(jié)點空間……)

法線夾角圖解:

3、Blender中的法線和空間向量

在Blender節(jié)點中,紫色的點輸出的并不是單純的一個數(shù)字,而是一個由三個數(shù)字組成的數(shù)組,它代表一個空間向量(或空間矢量,英文為Vector),這個向量代表模型上某個表面的法線朝向。

RGB三色分別代表XYZ三個方向,但由于XYZ方向有正有負而顏色卻不能為負,所以當(dāng)方向為負時該位置顯示為黑色,但這并不代表該位置的法向量為零向量,這里的數(shù)據(jù)依然可以被Blender計算,在圖中可以看到綠色面的對面為黑色,表示該向量的方向為(0,-1,0)。嘗試在此時旋轉(zhuǎn)正方體,理解為什么會出現(xiàn)顏色變化。(本文中默認向量長度為1)。

4、通過點積計算達到目的效果

回到本文目的,當(dāng)我們使用Bevel節(jié)點對模型表面的法線圖產(chǎn)生模糊時,Bevel法線與模型本身的法線在模型棱角處產(chǎn)生了區(qū)別,我們需要做的是通過操作將這些法線不相同的地方計算出來,在模型表面讓法線方向相同的地方表現(xiàn)為黑色,法線方向不同的地方表現(xiàn)為白色。即可達到本文中圖二的效果。

空間中兩向量必然存在一夾角,我們用θ表示,則0°≤θ≤180°(0≤θ≤π)。

在本文的情況下,Bevel法線與本體法線的夾角應(yīng)該低于90°,即0≤θ<π/2。

我們使用Blender材質(zhì)節(jié)點中Vector Math(矢量運算)節(jié)點中Dot Product(點積)運算:

點積為兩向量長度的乘積乘以夾角的余弦值(狂補高中數(shù)學(xué)):

不難看出點積可以直接表達出兩向量的余弦值,從而將向量夾角輸出。

此時,當(dāng)物體的棱角越尖,θ角越大,點積值越小,并且θ會在Bevel(倒角)節(jié)點中設(shè)定的半徑范圍內(nèi)柔和過渡至0。

但由于當(dāng)0≤θ≤π/2時,θ角的余弦值隨θ角的增大而減小,所以如果直接計算兩向量點積得出的結(jié)果應(yīng)該是物體平滑的地方白,有棱角的地方黑,所以我們還需要用Color Ramp(顏色漸變)節(jié)點對點積計算結(jié)果進行反向,順便調(diào)整。附一張來自網(wǎng)絡(luò)的余弦函數(shù)圖:

于是可以得出節(jié)點連接方式如下:

也可以用Geometry(幾何數(shù)據(jù))節(jié)點中的Normal(法線)屬性替代Bevel節(jié)點,沒啥區(qū)別

標簽:

責(zé)任編輯:mb01

網(wǎng)站首頁 | 關(guān)于我們 | 免責(zé)聲明 | 聯(lián)系我們

生活晚報網(wǎng)版權(quán)所有

Copyright @ 1999-2017 m.gaoerwen.cn All Rights Reserved豫ICP備2022016495號-7

聯(lián)系郵箱:939 674 669@qq.com